172 research outputs found

    The evolution of fire management practices in savanna protected areas in South Africa

    Get PDF
    The history and development of ecologically-based fire management policies in savanna protected areas during the 20th century are reviewed. Research on fire in savannas began in the 1950s, and from the 1980s onwards, managers of savanna protected areas experimented on large scales with different management approaches. New ecological paradigms that embraced variability in space and time, and management goals that broadened from single-species to biodiversity conservation, precipitated significant changes to management approaches in the 1990s. Many lessons have been learnt in the process, allowing for the derivation of general principles regarding both the effects of fire and managerial ability to influence fire regimes on a large scale. Significant challenges remain; these include dealing with increasing CO2 concentrations in the atmosphere,and with interactions between fire and increasing elephant numbers in protected areas. The ability of savanna managers to deal with these challenges in the context of an imperfect understanding will be determined by how well, and how fast, they can learn from experience

    Invasive alien plants and South African rivers: a proposed approach to the prioritization of control operations

    Get PDF
    1. A number of parallel initiatives in South Africa have been addressing the prioritization and management of invasive alien plant species, the prioritization of rivers for the conservation of biodiversity, and broad-scale planning for water resource management. This paper has combined aspects of these approaches to develop a composite index of prioritization of quaternary catchments for alien plant control purposes. 2. We calculated, for each quaternary catchment, a simple composite index that combined estimates of (i) the number of invasive alien plant species present; (ii) the potential number of invasive alien plant species that would be present if they occupied the full range as determined by climatic envelope models; (iii) the degree of habitat loss in rivers; and (iv) the degree of water stress. Each of the four components contributed between one and four to the combined index, which had a range of values between four and 16. 3. We used a geographic information system to map the distribution of priority catchments for invasive alien plant control. Of the 1911 quaternary catchments in South Africa and Lesotho, just over one-third (650) were in the highest priority category with an index of 13 or more. A relatively small proportion (273, or 14%) of the catchments had the maximum scores of 15 or 16. 4. The approach identified priority areas that have not currently been identified as such, and should provide decision makers with an objective and transparent method with which to prioritize areas for the control of invasive alien plants. We anticipate debate about the way in which components of the index are calculated, and the weight given to the different components, and that this will lead to the transparent evolution of the index. Improvements would also come about through the addition of a more comprehensive list of species, and through the addition of further components.DST-NRF Centre for Invasion Biolog

    Frequent burning promotes invasions of alien plants into a mesic African savanna

    Get PDF
    Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning

    Stochastic Species Turnover and Stable Coexistence in a Species-Rich, Fire-Prone Plant Community

    Get PDF
    Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site) and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a “neutral-like” pattern maintained by niche-differentiation

    The biogeography of South African terrestrial plant invasions

    Get PDF
    Thousands of plant species have been introduced, intentionally and accidentally, to South Africa from many parts of the world. Alien plants are now conspicuous features of many South African landscapes and hundreds of species have naturalised (i.e. reproduce regularly without human intervention), many of which are also invasive (i.e. have spread over long distances). There is no comprehensive inventory of alien, naturalised, and invasive plants for South Africa, but 327 plant taxa, most of which are invasive, are listed in national legislation. We collated records of 759 plant taxa in 126 families and 418 genera that have naturalised in natural and semi-natural ecosystems. Over half of these naturalised taxa are trees or shrubs, just under a tenth are in the families Fabaceae (73 taxa) and Asteraceae (64); genera with the most species are Eucalyptus,Acacia, and Opuntia. The southern African Plant Invaders Atlas (SAPIA) provides the best data for assessing the extent of invasions at the national scale. SAPIA data show that naturalised plants occur in 83% of quarter-degree grid cells in the country. While SAPIA data highlight general distribution patterns (high alien plant species richness in areas with high native plant species richness and around the main human settlements), an accurate, repeatable method for estimating the area invaded by plants is lacking. Introductions and dissemination of alien plants over more than three centuries, and invasions over at least 120 years (and especially in the last 50 years) have shaped the distribution of alien plants in South Africa. Distribution patterns of naturalised and invasive plants define four ecologically-meaningful clusters or “alien plant species assemblage zones”, each with signature alien plant taxa for which trait-environment interactions can be postulated as strong determinants of success. Some widespread invasive taxa occur in high frequencies across multiple zones; these taxa occur mainly in riparian zones and other azonal habitats,or depend on human-mediated disturbance, which weakens or overcomes the factors that determine specificity to any biogeographical region

    Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale

    Get PDF
    Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plantassociated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhîne river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8–35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature

    Does public awareness increase support for invasive species management?:Promising evidence across taxa and landscape types

    Get PDF
    Management of invasive species often raises substantial conflicts of interest. Since such conflicts can hamper proposed management actions, managers, decision makers and researchers increasingly recognize the need to consider the social dimensions of invasive species management. In this exploratory study, we aimed (1) to explore whether species’ taxonomic position (i.e. animals vs. plants) and type of invaded landscape (i.e. urban vs. nonurban) might influence public perception about the management of invasive species, and (2) to assess the potential of public awareness to increase public support for invasive species management. We reviewed the scientific literature on the conflicts of interest around the management of alien species and administered two-phased questionnaires (before and after providing information on the target species and its management) to members of the public in South Africa and the UK (n = 240). Our review suggests that lack of public support for the management of invasive animals in both urban and non-urban areas derives mainly from moralistic value disagreements, while the management of invasive plants in non-urban areas mostly causes conflicts based on utilitarian value disagreements. Despite these general trends, conflicts are context dependent and can originate from a wide variety of different views. Notably, informing the public about the invasive status and negative impacts of the species targeted for management appeared to increase public support for the management actions. Therefore, our results align with the view that increased public awareness might increase the public support for the management of invasive species, independent of taxonomic position and type of landscape

    Adaptive Management of Riverine Socio-ecological Systems

    Get PDF
    If ongoing change in ecosystems and society can render inflexible policies obsolete, then management must dynamically adapt as a counter to perennial uncertainty. This chapter describes a general synthesis of how to make decision-making more adaptive and then explores the barriers to learning in management. We then describe how one such process, known as adaptive management (AM), has been applied in different river basins, on which basis we discuss AM’s strengths and limitations in various resource management contexts
    • 

    corecore